SSOR and ASSOR preconditioners for Block-Broyden method

نویسندگان

  • Geng Yang
  • Peng Jiang
چکیده

Solving nonlinear equations is a problem that needs to be dealt with in the practical engineering application. This paper uses Block–Broyden method for solving large-scale nonlinear systems, and two preconditioners are applied for solving the underlying linear systems, including SSOR preconditioner as well as ASSOR method, which is based on SSOR. It discusses their implementation processes and compares the two algorithms from different aspects. Finally, it solves the nonlinear systems arising from the Bratu problem. Experimental results show that the preconditioning technique is effective for the Block–Broyden method and that the preconditioner ASSOR has better performance as a whole. Therefore, it can be used in the large-scale problems arising from scientific and engineering computing. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance analysis of preconditioners based on Broyden method

Solving nonlinear equations is a problem often needed to be dealt with in the practical engineering application. This paper discusses preconditioning methods based on Block Broyden method. It first introduces the Block Broyden method and preconditioning technique. Then it presents four different preconditioners for the Block Broyden method and discusses the implementation process. It also analy...

متن کامل

On SSOR-like preconditioners for non-Hermitian positive definite matrices

We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...

متن کامل

The effectiveness of HYMLS in the Jacobi-Davidson method for stability analysis of fluid flow problems

We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...

متن کامل

Block-triangular Preconditioners for Systems Arising from Edge-preserving Image Restoration

Signal and image restoration problems are often solved by minimizing a cost function consisting of an `2 data-fidelity term and a regularization term. We consider a class of convex and edge-preserving regularization functions. In specific, half-quadratic regularization as a fixed-point iteration method is usually employed to solve this problem. The main aim of this paper is to solve the above-d...

متن کامل

A Class of Nonsymmetric Preconditioners for Saddle Point Problems

For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 188  شماره 

صفحات  -

تاریخ انتشار 2007